On the Numerical Solution of a Viscous Incompressible Electrically Conducting Fluid Flow over a Stretching Sheet

نویسنده

  • Ch. Mamaloukas
چکیده

A numerical solution is carried out in this paper in order to study the steady laminar flow of a Newtonian electrically conducting fluid over a stretching sheet. The approach to this numerical solution is based on the idea of stretching the variables of the flow problem. Thereafter, we use the least squares method to minimize the residual of the “defect function”. Subsequently, this approximate solution is being compared with the exact solution which is obtained using the similarity method and is in dimensional form. The exact as well as the numerical solution are demonstrated through numerical computations and presented graphically. Finally, the results are discussed. AMS Subject Classification: 35A22, 35A35, 65M99, 65C20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating

The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...

متن کامل

Stagnation-point flow of a viscous fluid towards a stretching surface with variable thickness and thermal ‎radiation‎

‎In the present analysis‎, ‎we study the boundary layer flow of an incompressible viscous fluid near the two-dimensional stagnation-point flow over a stretching surface‎. ‎The effects of variable thickness and radiation are also taken into account and assumed that the sheet is non-flat‎. ‎Using suitable transformations‎, ‎the governing partial differential equations are first converted to ordin...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

Effects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer

The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005